International Registered L Recognized Research Journal Related to Higher Education for all Subjects

INTERLINK RESEARCH ANALYSIS

REFEREED & PEER REVIEWED RESEARCH JOURNAL

Issue: XIX, Vol. II Year - 10 (Half Yearly) (Jan. 2019 To June 2019)

Editorial Office:

'Gyandeep', R-9/139/6-A-1, Near Vishal School, LIC Colony, Pragati Nagar, Latur Dist. Latur - 413531. (Maharashtra), India.

<u>Contact</u>: 02382 - 241913 09423346913,09637935252,

09503814000,07276301000

Website

www.irasg.com

E-mail:

interlinkresearch@rediffmail.com visiongroup1994@gmail.com mbkamble2010@gmail.com drkamblebg@rediffmail.com

Publisher:

Jyotichandra Publication, Latur, Dist. Latur. 415331 (M.S.) India

Price: ₹ 200/-

CHIEF EDITOR

Dr. Balaji G. Kamble

Research Guide & Head, Dept. of Economics, Dr. Babasaheb Ambedkar Mahavidyalaya, Latur, Dist. Latur (M.S.) Mob. 09423346913, 9503814000

EXECUTIVE EDITORS

Dr. Aloka Parasher Sen

Professor, Dept. of History & Classics, University of Alberta, Edmonton, (CANADA).

Dr. Huen Yen

Dept. of Inter Cultural International Relation Central South University, Changsha City, (CHAINA)

Dr. Omshiva V. Ligade

Head, Dept. of History, Shivjagruti College, Nalegaon, Dist. Latur. (M.S.)

Dr. G.V. Menkudale

Dept. of Dalry Science, Mahatma Basweshwar College, Latur, Dist. Latur.(M.S.)

Dr. Laxman Satya

Professor, Dept. of History, Lokhevan University, Loheavan, PENSULVIYA (USA)

Bhujang R. Bobade

Director, Manuscript Dept., Deccan Archaeological and Cultural Research Insititute, Malakpet, Hyderabad. (A.P.)

Dr. Sadanand H. Gone

Principal, Ujwal Gramin Mahavidyalaya, Ghonsi , Dist. Latur. (M.S.)

Dr. Balaji S. Bhure

Dept. of Hindi, Shivjagruti College, Nalegaon, Dist. Latur.(M.S.)

DEPUTY-EDITORS

Dr. S.D. Sindkhedkar

Vice Principal PSGVP's Mandals College, Shahada, Dist. Nandurbar (M.S.)

Dr. C.J. Kadam

Head, Dept. of Physics Maharashtra Mahavidhyalaya, Nilanga, Dist. Latur.(M.S.)

Veera Prasad

Dept. of Political Science, S.K. University, Anantpur, (A.P.)

Johrabhai B. Patel,

Dept. of Hindi, S.P. Patel College, Simaliya (Gujrat)

CO-EDITORS

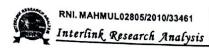
Sandipan K. Gaike

Dept. of Sociology, Vasant College, Kej, Dist. Beed (M.S.)

Ambuja N. Malkhedkar

Dept. of Hindi Gulbarga, Dist. Gulbarga, (Karnataka State)

Dr. Shivaji Vaidya


Dept. of Hindl, B. Raghunath College, Parbhani,Dist. Parbhani.(M.S.)

Dr. Shivanand M. Giri

Dept. of Marathi, B.K. Deshmukh Coffege, Chakur Dist. Latur.(M.S.)

INDEX

Sr.	Title for Research Paper				
No					
1	Human Development in India Dr. S. R. Patil	•			
	Economic Reforms and Foreign Trade Policy : An	7			
2	Overview				
	Dr. Balaji G. Kamble				
	Cultural, Social and Gender Bias in Doris Lessing's	12			
3	The Grass is Singing				
	G. Ramana Reddy				
	Analytical Study of Causes of Less Female	17			
4	Participation in Sports in Maharashtra				
	Ashokkumar J. Tiwari, Dr. O. P. Aneja				
	Dissociation Energy of the Ground Electronic State of	27			
5	MgO				
	M. M. Chaudhari				
6	राजर्षी शाहू महाराज यांचे सामाजिक योगदान	33			
	वनिता विव्वलराव जाधव				
7	महात्मा फुले यांचे सामाजिक विचार	40			
	जी. सी. चव्हाण				
8	राष्ट्रसंत तुकडोजी महाराजांचा स्त्री विषयक दृष्टीकोन	46			
	डॉ. कल्पना त्र्य. मेहरे				
9	खो-खो संघ निवडीसाठी खो-खो खेळाडूंची स्फाटक क्षमता मानके	50			
	सुनिल ढाकूलकर				
10	नगरपरिषदेतील चतुर्थश्रेणी कर्मचाऱ्यांच्या सामाजिक स्थितीचा अभ्यास	55			
10	एस. एन. सातव, प्रा. डॉ. रामचंद्र भिसे				

IMPACT FACTOR 6.20

ISSN 0976-0377

Issue : XIX, Vol. IV, Jan. 2019 To June 2019 27

Dissociation Energy of the Ground Electronic State of MgO

M. M. Chaudhari

Dept. of Physics, Maharashtra Mahavidyalaya, Nilanga, Dist. Latur

Research Paper - Physics

ABSTRACT

Dissociation Energy (D) of the ground electronic state of MgO is H-H, Materra and Extended Rydberg function. D_o values obtained from H-H and Materra functions are 3.76 eV and 3.48 eV respectively. They are in best agreement with experimental $D_{\rm o}$ value of 3.76 eV. Curve obtained from Extended Rydberg function fits best to RKRV curve as compared to other functions.

Introduction:

The potential energy measured from the minimum of the potential energy curve to the asymptotic part running parallel to the inter-nuclear distance is the dissociation energy De of the diatomic molecule.

$$D_e = D_o + G(o)$$
 ----(1)

Where D_o = Zero point energy of the electronic state.

$$G(o) = (\underline{\omega}_e/2) - (\underline{\omega}_e x_e/4) + (\underline{\omega}_e y_e/8) - \dots$$
 (2)

Dissociation energy of the diatomic molecule can be estimated by various ways. Mass spectrometric studies, pre-dissociation methods, flame photometric studies are some of the laboratory methods to determine D_o. The most commonly used method to determine D_e is the method of curve fitting. In this method RKRV curve of an electronic state of a diatomic molecule is determined. Potential energy curve determined from an

empirical function is allowed to fit to RKRV curve for a particular value of De. The potential function which matches the best to RKRV curve gives the estimate of D_e of a diatomic molecule under study.

D_c of MgO molecule is still uncertain. Experimental value of D_o reported [1-2] is 3.71 eV. Various workers [3-9] reported D_0 values ranging from 2.80 eV to 4.34 eV. Looking at the variation in the value of D_o reported by different workers, it was thought to apply new potential function to the ground electronic state of MgO such as H-H [10-11], Materra [12] and Extended Rydberg [13] to estimate D_o of MgO.

Theory:

RKRV Method

This method is developed by Rydberg [14-15] and Klein [16]. It is further modified by Rees [17] and Vanderslice [18]. This method is based upon phase integrals and WKB [19-21] approximations, where the use of molecular constants determined from experimental data are made to construct potential energy curve. This is an established method of representing true potential energy curve of an electronic state of a diatomic molecule. According to this method the turning points are given by

$$r \pm = [(f/g) + f^{2}]^{1/2} \pm f$$
where $r^{+} = r_{max}$ and $r_{-} = r_{min}$

$$G(v) = \omega_{e} (v + \frac{1}{2}) - \omega_{e} x_{e} (v + \frac{1}{2})^{2} \qquad ------(4)$$

$$B(v) = B_{e} - \alpha (v + \frac{1}{2}) \qquad ------(5)$$

Hulbert Hirschfelder (H-H) function

This function is the modification of Morse function and is of the form [10-11]

$$U_{H-H}(r) = D_e [(1-e^{-x})^2 + Cx^3 e^{-2x} (1+bx)]$$
 ----(6)

Materra function

This method is based on series expansion and is given by [22]

$$V(x) = d_0 F^2(x) [1 + d_1 F(x) + d_2 F^2(x) +]$$
 ----(7)

IMPACT FACTOR 6.20

ISSN 0976-0377 Issue: XIX, Vol. IV, Jan. 2019 To June 2019 29

The coefficients di are determined in terms of Dunham coefficients ai by equating the derivatives at x = 0 for V(x).

Extended Rydberg function

Huxley and Murrel [13] suggested a 3 parameter function based on the use of Where $\underline{a_1}$ $\underline{a_2}$, $\underline{a_3}$ are the constants obtained from harmonic ,cubic and quartic force constants. $\beta = r - r_e$ and $D_e =$ dissociation energy.

Estimation of D, of MgO

De of MgO is estimated using H-H, Materra and Extended Rydberg function. Details of the equations used in this paper can be obtained from the respective reference. Molecular constants are taken from Huber [23]. Constants derived to solve the above functions are presented in table 1. Corrected value of ?e[24] of MgO = 785.1 is used. RKRV turning points are determined using equation 3. A computer program is developed to plot the RKRV curve. 15 vibrational levels are used. The turning points and G(v) values are shown in table 2. RKRV curve is plotted in figure 1. Substituting these G(v) values and the corresponding r values in equation 6 of H-H function, De of H-H is determined. Similar method is used to compute Do of Mattera function from equation 7.

RKRV turning points are used to calculate the G(v) values from extended Rydberg function. Experimental De = 3.76 eV is used. G(v) determined from H-H, Materra and Extended Rydberg function are presented in table 2. Do values obtained from H-H and Materra functions are 3.76 eV and 3.48 eV respectively. They are in best agreement with experimental D_o value of 3.76 eV. RKRV curve along with H-H, Materra and Extended Rydberg are shown in figure 1. All these curves fit to RKRV curve to a good extent. Curve obtained from Extended Rydberg function fits best to RKRV curve as compared to other functions.

Acknowledgements:

Author thanks Dr. S H Behere, Dept of Physics, Dr. B.A.M.U. Aurangabad and the college authorities for the encouragement.

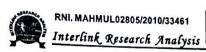
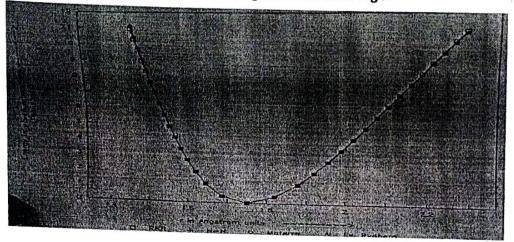

ISSN 0976-0377 Issue : XIX, Vol. IV, Jan. 2019 To June 2019 30

Table 1: Constants of H-H, Materra and Extended Rydberg function

METERS TEST TO THE THE HAVE	netion practilizate designation and
	GESGES N. S. L. S. LIAGES
	1.071.060cc.5
2. T. 20070.753	
49 4 51,285072	
white the veloce Extended Ryth	
13/60 KT2 # 9 464672	10.74 1 = 0.182811 10.74 1 = 0.18108438
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(mg/A-3); = 0,3539749
amazananananan basan edik badasa	g interpreted and a long to the property of

Table 2: RKR turning points and G(v) values determined using H-H, Materra andExtended Rydberg function for ground state of MgO.

	ming pai		Da # 30240		2953		3032	
900	Palif	газн	(Lein)		(Uezra	Unax	-lmi(r	,Umai
	11314 11314	ein i	116261	7-10 KG			n 391740 11166 23	
		1000		1973 1974		7.5-417/6 2694-66	1981 79 2587 98	2662
	663 663 663	2,0213	4161.68 4890.27	1144 67 4665 23	4894.27	4143 56 4661 44	4905,32	4073
	10003 10276 1176	271070	6322.51		5618.10 6328.65 7033.08	6263103	5627 57 6342 47 7050 19	COLUMN TO SECURE
10 2672.0 11 8343.1		201604 201665	7725, 76 6417, 12 9101, 60	763 0,3 8 829 5, 67	7734 52 6427 36	8281.37	7750.84 18444.85 9132.02	7640. 8304 8957
13 9654-2 14 10294.2	4 1.4941 6 1.4769	2 2370 2 2832	9780.47 10453.58	9594.46 10228.00	9794.02 10468.95	9571.36 10199.42	9813.66 10489.57	5599 10230
1. 10.02	2 1,4701	2,2004	11120159	10851,28	11137.89	10815.61	11(59,45	10051



IMPACT FACTOR 6.20

ISSN 0976-0377 Issue : XIX, Vol. IV, Jan. 2019 To June 2019 31

31

Figure 1: Potential energy curves of ground state of MgO.

References :-

- [1] Srivastava R D, High temp Sc., 8, 255, 1976
- [2] Farber M, Srivastava R D, High temp Sc., 8, 195, 1976
- [3] Drowart J, Exsteen G, Varhagen G, Trans Far Soc, 60, 1920, 1964
- [4] Veits IV, Guvrich LV, Z Phys Chem, 31, 2306, 1957
- [5] Witko M, Bonacie-Koutecky, Intl J Qtm Chem, 29, 1535, 1986
- [6] Thummel H, Klotz R, Peyerimhoff S D, Chem Phys, 129, 417, 1989
- [7] Langhoff S R, Bauschlicher Jr, Partridge, J Chem Phys, 84, 4470, 1986
- [8] Murthy N S, Bagare S P, J Phys B: Atom Mole Phys, 114, 623, 1978
- [9] Badri Rai, Rai S N, Ind J Pure App Phys, 10, 401, 1972
- [10] Hulbert H M, Hirschfelder J O, J Chem Phys, 9, 61, 1941
- [11] Hulbert H M, Hirschfelder J O, J Chem Phys, 35, 1901, 1961
- [12] Mattera L, Salvo C, Terreni S, Tommasini F, J Chem Phys, 72, 2, 1980
- [13] Huxley P, Murrel, J Chem Soc Fara II, 79, 223, 1983
- [14] Rydberg R, Z Phys, 73, 376, 1931
- [15] Rydberg R, Z Phys, 80, 514, 1933
- [16] Klein O, Z Phys, 76, 226, 1932

ISSN 0976-0377

Issue: XIX, Vol. IV, Jan. 2019 To June 2019 32

- Rees A L G, Proc Phys Soc, 59, 998, 1947 [17]
- Vanderslice J T, Meson E A Maisch W G, Lippincott E R, J Chem Phys, 33, [18]
- 614, 1960; J Mole Spectros, 3, 17, 1959 and 5, 83, 1960
- [19] Wentzel G, Z Physik, 38, 518, 1926
- [20] Kramers HA, Z Physik, 39, 828, 1926
- [21] Brillouin L, Z Physik, 7, 353, 1926
- [22] Mattera L, Salvo C, Terreni S, Tommasini F, J Chem Phys, 72, 12, 6815, 1980
- Huber KP, Herzberg G, Constants of diatomic molecules, IV ed., 1979 [23]
- Ikeda J, Wong NB, Harris DO, Field RW, J Mole Spectros, 68,452, 1977 [24]