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In this research paper, we have proved uniqueness and existence of common fixed point
theorems for complete dislocated quasi-metric space (DQMS). Our results generalizes fixed
point results in complete DQMSin existing research.
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1. Introduction

Fixed point theorem given by S. Banach [3] appeared in 1922, which is
useful to solve the existence of solutions for the various nonlinear problems
which used to arise in the various fields of sciences like biological, physical
and social sciences. In 1994, S. Abramski et al. gave few facts pertaining the
dislocated metric (DM). The notion of DM space was initiated by P. Hitzler et
al. [4] in 2000 and gave some extensions of Banach contraction principle in
complete dislocated metrics space (DMS). Zeyada et al. [8] in 2006 gave the
generalization of results given by Hitzler and Seda in DQMS. Aage and
Salunkein [1] gave some results in DQMS in 2008. For more results about
dislocated quasi-metric space one can refer [5, 6]. In this paper, we will use
the acronym DQMS for dislocated quasi-metric space.

2. Preliminaries

Definition 2.1 [7]. For X # 0 consider the map d: X x X — [0, «)
which satisfies:

(dql)d(x’ y) = d(y9 .’Xf) =0=>x=y

(dge) - d(x, y) < d(x, 2) +d(z, y), Vx, 5, z € X

Here d is called dislocated quasi-metric on X and (X, d) is DQMS.

Definition 2.2 [7]. In a DQMS (X, d), sequence {x,} converges to z, if
lim,,_,,, d(x,, z) = 0 = lim,,_,., d(z, x,,).

Definition 2.3 [7]. In a DQMS (X, d), {x,,} is said to be Cauchy if for a
given ¢ > 0, Iny € N such that, Vm, n > ng, d(x,,, x,,,) < € or d(x,,, x,,) < €.

Definition 2.4 [7]. ADQMS (X, d) is complete, if each Cauchy sequence
in X is dg-convergent to a point in X.

Definition 2.5 [7]. If (X, d) be a DQMS. Then f : X — X is contraction

if 30 < a < 1 such that for all x, y € X, d(fx, fy) < ad(x, y).

Theorem 2.6 [8]. Let (X, d) be a complete DQMS and let T : X — X be

continuous contraction function. Then in X there exists a unique fixed point of
T.
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Theorem 2.7 [1]. Suppose (X, d) is complete DQMS and T : X — X be
a continuous se If mapping such that V x,ye X, dTx, Ty) <

Bld(x, Tx) +d(y, Ty), 0 < B <

NO|

Then fixed point of T is unique.
3. Main Results

Theorem 3.1. In complete DQMS (X, d), suppose T :X — X be

continuous mapping, such that
1 1
Vx,yeX,OSoc<§,OSB<§and4a+[3<1,

Ty)[1 + d(x, Tx)]

d(Tx, Ty) < ofd(x, ) + d(y, Tx)] + p 22 1+ d(x, y)

(3.1)

Then 3! u € X such that T(u) = u.
Proof. Suppose x; € X and {x,} a sequence in X such that Tx,, = x,,,1.

Consider,
d(xn’ xn+1) = d(Txn—l’ Txn) < O('[d(Txrz—l’ Txn) + d(xn’ Xn+1 )] +

d(xnv Txn)[l + d(xn—la Txn—l )]
1+d(x,_1, x,)

&

d(xn’ xn+1)[1 + d(xn—l’ Xn )]
1+d(x,_1, x,)

= a[d(xn—l’ xn+1) + d(xn’ xn)] + B

S O‘[d(xn—l’ Xp41) + d(x, xn+1)] +Bd(xy,, Xy11) + OL[d(xn—l’ Xpi1) + d(Xy, X9 )]
(by triangle inequality and d(x,,, x,,) = 0)
= (1 - 20— B) d(xn’ xn+1) < 2ad(xn—1’ xn)

. 2
Le.  d(x,, x,41) < T:Jrﬁ)d(xn_l, x,) = Md(x,,_1, x,,), where

200

AT Gaap b
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[since 0 <4a+B <1 =20+ (2a+p)<1

20,
T~ @osp) <

ie. 200 <1- (20 +B) =
Similarly, d(x,_1, x,,) < Ad(x,,_a, X,_1)
2
d(xn’ xn+1) <N d(xn—z’ xn—l)
Continuing in this way, we get

d(xn’ xn+1) = Knd(xo, xl)
Now, for any m, n € X with m > n, using the triangle inequality, we
have
d(xm xm) < d(xn’ xn+1) + d(xn+1’ xn+2) +.o..t d(xm—l’ xm)

< knd(xo, .’)Cl) < k’”ld(xo, xl) + ...+ Km_ld(xo, xl)

?\‘n

< (P n+l m-1 _
ST+ L+ N %

d(xq, x1), since A <1

N
For any ¢ > 0, choose N € N with 17‘_—7»d(x0, X)) <€

For any m, n > N, we have

A AV
d(x,,, x,,) < md(xo, xp) < T d(xg, x1) < €

= {x,} is Cauchy in (X, d). Therefore d(x,_i, x,) < Ad(x,_9, X,_1)
Ju € X with lim,, ,, x,, = u.

-+ T 1s continuous,

wTu=T(lim x,) = lim T(x,)= lim x,,; = u
n—o n—oo n—oo

Hence, T(u) = u.
Uniqueness of fixed point:
Suppose that for u, v € X with u # v and T(u) = u, T(v) = v.
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We will show that d(u, ) =0 and d(v, v) = 0. If d(u, u)> 0, then by
equation (3.1), we have d(u, u)=d(Tu, Tu) < o[d(u, Tu)+ d(u, Tu)] +

d(u, Tu)[1 + d(u, Tu))
P 1+ d(u, u)

which is a contraction. Hence d(u, u) = 0.

< (20 + B)d(u, u) < d(u, u) since 0<2a+B<1

Similarly, one can show that d(v, v) = 0.
Now, we will show that d(u, v) = d(v, u) = 0

From equation (3.1), we have

d(v, To)[1 + d(u, Tu)]
1+ d(u, v)

d(u, v) = d(Tu, Tv) < o[d(u, Tv) + d(v, Tu)] + B

d(v, v)[1 + d(u, u)]

< ald(w, v) + d(v, W]+ p==77 d(u, v)

(3.2)

and

d(v, u) = d(Tu, Tv) < of[d(v, Tu) + d(u, Tv)] + B du, Tu)[1 + d(v, Tv)]

1+d(v, u)
< fd(v, w) + dlu, v)] + p A2 [Cli(z,df)” o)l 3.9
From equations (3.2) and (3.3), we get,
| d(w, v) —d(v, u)| = 0 = d(u, v) = d(v, w). (3.4)

Using equation (3.4) in equations (3.2) and (3.3), we get d(u,v)
=0 =d(v, u)

Therefore, by definition of DQMS, © = v, which is a contradiction.
Hence, 3'u € X with T(u) = w.
Theorem 38.2. For a complete DQMS (X, d), let T:X - X be a

continuous mapping, such that Vx,y e X,0 < aq, ag, 03 < %, 20 + 4o

+og < 1,
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d(Tx, Ty) < oq[d(x, Tx) + d(y, Ty)] + as[d(x, Ty) + d(y, Tx)] +

o d(y, Ty)[1 + d(x, Tx)]

1+d(x, y) (3.5)

Then 3'u € X with T(u) = u.

Proof. Suppose xy € X and {x,} be sequence in X such that

Tx,, = x,.1-
Consider, d(x,, x,,,1) = d(Tx,_1, Tx,,)
<oq [d(xn—b Txn—l) + d(xn’ Txn )] +dg [d(xn—l’ Txn) + d(xn’ Txn )]

d(xn’ Txn)[1 + d(xn—l’ Txn—l )]
1+d(x,_1, x,)

+ a3

=01 [d(xnfl’ xn) + d(xn’ Xn+1 )] + 09 [d(xnfl’ xn+1) + d(xn’ Xn+1 )]

+ o

d(xn’ xn+1)[1 + d(xn—l’ Xn )]
3 1+d(x,_1, x,)

< oqd(x, 1, %) + 01 d(%y, Xp11) + 0d(y 1, Xp41) + 02d(2y, Xp11)
+ogd(x, 1, %) + 0pd(xy, Xpy1) + 03X, Xpy1)
(by triangle inequality)
= (1 -0 =20 — a3)d(xp, Xpy1) < (0 + 2009)d(o, 1, X5,)

(o +2a9)
1t 20(2 + (13)

ie.  d(x,, x,,1) < e d(x,_1, x,) = AMd(x,,_1, x,), where

3 = (0 + 2a9)

_1—((11 +202+(XS)<1

[since 0 < 204 +4og + 03 <1<1= (o +209)+ (0 + 209 +0a3) <1

(0 + 209)

1
1—(0(1 +20(2+0L3)< ]

ie. (0 +209) <1—(0q + 209 +a3) =

Similarly, d(x,_1, x,,) < Ad(x,,_2, X,_1)
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d(xn’ xn+1) < }"Zd(xn—z’ xn—l)
Continuing in this way, we get
d(xna xn+1) < 7"nd(an xl)

Now, for any m, n € X with m > n, using the triangle inequality, we

have
d(xm xm) < d(xn’ xn+1) + d(xn+1’ xn+2) +.o..t d(xm—l’ xm)
< knd(xo, xl) < 7\.n+1d(.’)C0, .’)Cl) +...+ km_ld(xo, xl)

}\’n

< (P n+l m-1 _
<SP+ L N T

d(xq, x1), since A <1

7\‘11

For any ¢ > 0, choose N € N with T

d(xo, xl) < €

Then for m, n > N, we have

At A
d(xy, x,) < md(xo, x1) < 1-% d(xp, x1) < €
Similarly, it is easy to show d(x,,, x,,) < €

This shows that, {x,,} is a Cauchy in DQMS (X, d). Therefore Ju € X

such that lim,,_,,, x,, = w.

Since T'is continuous, so we have

wTu=T( lim x,) = lim T(x,) = lim x,,,; =u
00 n—»o n—>o0

Hence, T(u) = u.
Uniqueness of fixed point:

For u, v e X with u # v and T(«) = u, T(v) = v.

We will show that d(u, u) =0 and d(v, v) = 0. If d(u, u) > 0, then by
equation (3.5), we have d(u, u)=d(Tu, Tu) < oy[d(u, Tu)+ d(u, Tu)] +
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asld(u, Tu) + d(u, Tu)] + og d(u, Tl’uJ)r[il(w; dL(LL)L, Tu)|

< (204 + 209 + a3)d(u, u) < d(u, u)
since 0 < (204 + 209 + a3) <1, which is a contraction. Hence d(u, u) = 0.
Similarly, one can show that d(v, v) = 0
Now, we will show that d(u, v) = d(v, u) = 0
From equation (3.5), we have
d(u, v) = d(Tu, Tv)
< oy[d(w, Tu) + d(v, Tv)] + as[d(u, Tv) + d(v, Tu)]

d(v, Tv)[1 + d(u, Tu)
1+ d(u, v)

+ Og

= oy [d(u, u) + d(v, V)] + ag[d(u, v) + d(v, ©)] + ag d(, lvzr[ld?u(,ig;, )] (3.6)

And

d(v, u) = d(Tv, Tu)

< oy [d(v, Tv) + d(u, Tu)] + ag[d(v, Tu) + d(u, Tv)]

d(u, Tu)[1 + d(v, Tv)]

T3 1+dv, u)

< oyfd(v, v) + dlu, ]+ wsfd(v, ) + d(u, V] + o W) [Cll(z,df)” ol (3.7

From equations (3.6) and (3.7), we get
| d(u, v) — d(v, u)| = 0 = d(u, v) = d(v, u) (3.8)

Using equation (3.8) in equations (3.6) and (3.7), we get
d(u, v) =0 = d(v, u)

Therefore, by definition of DQMS, © = v, which is not true.

o3 u € X such that T(u) = u.
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4. Conclusion

Here we proved two fixed point theorems for self-continuous function in

complete DQMS which combines, generalizes a number of familiar results in

the history of fixed point theory.
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